论文部分内容阅读
It is well known that forest carbon or sink projects have not been included in theClean Development Mechanism (CDM), one of the flexible mechanisms created under the Kyoto Protocol. The main concern for postponing sink projects is related to issues of methodology and integrity. Project eligibility needs to be judged in a transparent manner if they are real, measurable,provide long-term benefits to mitigate climate change, and provide additional benefits to those thatwould occur in the absence of a certified project. One of the biggest challenges in implementing sink projects is fire risks and the associated biophysical and socio-economic underlying causes. This study attempts to assess fire probability and use it as a tool to estimate fire risk in carbon sink projects. Fire risks may not only threatenongoing projects but may also cause leakage of carbon stocks in other areas, especially in pro-tected areas. This exercise was carried out in the Berbak National Park located in Jambi Province, Sumatra, Indonesia and the surrounding areas. Fire probability is associated with (i) the means by which access to a given area is possible, and (ii) vegetation type or fuel load. Although most fires were intentionally ignited, fire escape iscommon and is enhanced by long spell of dry weather. When this occurs, secondary road was themost frequently used means, and it was certainly the case during 1997/1998 big fires when dam-age to natural vegetation (natural and secondary forests) was substantial. Burnt natural vegetationwas 120000 ha or 95% of the total burnt areas, and released more than 7 Mt of carbon into the atmosphere.
It is well known that forest carbon or sink projects have not been included in theClean Development Mechanism (CDM), one of the flexible mechanisms created under the Kyoto Protocol. The main concern for postponing sink projects is related to issues of methodology and integrity. Project one of the biggest challenges in implementing sinks projects is fire risks and the associated biophysical and socio-economic underlying causes. This study attempts to assess fire probability and use it as a tool to estimate fire risk in carbon sink projects. Fire risks may not only threatenongoing projects but may also cause leakage of carbon stocks in other areas, especially in pro-tected areas. This exercise was carried out in the Berbak National Park located in Jambi Prov Ince, Sumatra, Indonesia and the surrounding areas. Fire probability is associated with (i) the means by which access to a given area is possible, and (ii) vegetation type or fuel load. Although most fires were intentionally ignited, fire escape iscommon when this occurs, secondary road was themost frequently used means, and it was certainly the case during 1997/1998 big fires when dam-age to natural vegetation (natural and secondary forests) was substantial. Burnt natural vegetationwas 120000 ha or 95% of the total burnt areas, and released more than 7 Mt of carbon into the atmosphere.