论文部分内容阅读
本文讨论了有限变形粘弹性Timoshenko梁的动力学行为。首先由Timoshenko梁的理论和分数导数型本构关系给出了梁的控制方程。其次为了便于求解,采用Galerkin方法对系统进行了简化,并比较了1阶和2阶截断系统的动力学性质,它们具有相同的定性性质,说明Galerkin方法的合理性。给出了求解包含分数积分的积分-微分方程的一种新方法,以便求解系统的长时间的解。综合利用非线性动力系统中的经典方法,揭示了梁在有限变形情况下丰富的动力学行为,并分别考察了载荷参数的材料参数对结构的动力学行为的影响。