论文部分内容阅读
传统稀疏算法对信号的稀疏程度要求高、抗噪能力差。针对该问题,从K-SCA假设出发,提出一种基于超平面隶属度函数的欠定盲源分离算法。该函数基于局部统计,具有良好的抗噪性能,适用于噪声和信号稀疏程度较低条件下的信号分离。实验结果表明,相比同类算法,该算法对信号稀疏要求低、分离精度高、容噪能力强。