对系统应用能量解题的思路

来源 :高中生学习·高二文综版 | 被引量 : 0次 | 上传用户:zyu03
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  应用能量解决有关系统的问题需要注意:一是建立解题模型,化繁琐的物理情景为简单的模型. 二是建立思考程序,化抽象的方法为具体的步骤.
  一、绳模型
  例1 如图1,跨过同一高度处的光滑滑轮的细线连接着质量相同的物体[A]和[B],[A]套在光滑水平杆上,定滑轮离水平杆高度为[h=0.2m].开始让连接[A]的细线与水平杆夹角[θ=53°],将[A]由静止释放,在以后的运动过程中,求[A]所能获得的最大速度[(cos53°=0.6,sin 53°=0.8)].
  图1
  分析 对[A]球与[B]球的联系分析:由于物体[A]与物体[B]用绳子拴着,它们的联系是通过绳子来体现的,所以[A、B]两物体沿着绳子方向的速度大小相等,当物体[A]滑至左滑轮正下方达最大速度[vAm]时,物体[A]沿绳方向的速度分量为零,即此时物体[B]速度为零.
  对[A]球与[B]球的几何分析:由于绳长不变,物体[B]下移的高度为[hB=hsinθ-h]
  对[A]球与[B]球的能量分析:物体[B]的重力势能减少了[mg(hsinθ-h)],物体[A]的动能增加了[mv],对于[A、B]组成的系统,机械能守恒.
  解析 当物体[A]滑至左滑轮正下方达最大速度[vAm]时,物体[A]沿绳方向的速度分量为零,即此时物体[B]速度为零,此过程物体[B]下移的高度,有
  [hB=hsinθ-h]
  由[A、B]组成的系统机械能守恒,有
  [mg(hsinθ-h)=12mvAm2]
  所以[vAm=2gh1sinθ-1]
  二、杆模型
  例2 光滑的长轨道形状如图2,底部为半圆形,半径为[R], 固定在竖直平面内,[A、B]两质量相同的小环用长为[R]的轻杆连接在一起,套在轨道上.将[A、B]两环从图示位置由静止释放,[A]环与底部的距离为[2R].不考虑轻杆和轨道的接触,即忽略系统机械能的损失,求[A]环到达最低点时,两环速度大小.
  图2
  分析 对[A]环与[B]环的联系分析:由于[A]环与[B]环用木杆连着,它们的联系是通过木杆来体现的,所以[A]环与[B]环在沿着木杆的方向速度大小相等.
  对[A]环与[B]环的几何分析:当[A]环到达轨道最低点时,[B]环也已进入半圆轨道,如图3.
  对[A]环与[B]环的能量分析:[A]环下降,它的动能和重力势能增加;[B]环下降,它的动能和重力势能增加. 对于[A]环与[B]环所组成的系统,机械能守恒.
  解析 当[A]环到达轨道最低点时,[B]环也已进入半圆轨道,如图3,由几何关系知两环的速度大小相等(设为[v]),由机械能守恒定律,有
  图3
  [12?2mv2=mg?2R+mg(2R+Rsin 30°)]
  解得[v=3gk2]
  三、接触模型
  例3 如图4,一个内壁光滑的半圆形圆弧槽,半径为[R],质量为[m],放在光滑的水平地面上,现将一根质量为[M]的光滑木棒由圆弧槽的顶端自由释放,由于木棒放置在卡槽内导致木棒不能水平移动,当木棒运动到圆弧槽底端时,圆弧槽的速度是多少?
  图4
  分析 对木棒与圆弧槽的几何分析:木棒运动到圆弧槽底端下降的高度为[R],圆弧槽水平移动了位移为[R].
  对木棒与圆弧槽的能量分析:木棒运动到圆弧槽底端, 其重力势能减少了[Mg?R], 圆弧槽水平移动, 它的动能增加. 对于木棒和圆弧槽所组成的系统,机械能守恒.
  解析 以木棒和圆弧槽组成的系统为研究对象,由机械能守恒定律,有
  [12?mv2=Mg?R]
  解得[v=2MgRm]
  四、弹簧模型
  例4 如图5,轻弹簧一端与墙相连处于自然状态,质量为4kg的木块沿光滑的水平面以5m/s的速度运动并开始挤压弹簧,求木块被弹回速度增大到3m/s时弹簧的弹性势能.
  图5
  分析 对木块与轻弹簧的能量分析:木块的速度由5m/s变成3m/s,木块的动能减少,弹簧被压缩,弹簧的弹性势能增加. 对于木块和弹簧所组成的系统,机械能守恒.
  解析 由机械能守恒,有
  [12mv02=12mv12+Ep1]
  所以[Ep1=12mv02-12mv12=12]×4×(52-32)J=32J
  如 图,质量为[m1]的物体[A]经一轻质弹簧与下方地面上的质量为[m2]的物体[B]相连,弹簧的劲度系数为[k,A、B]都处于静止状态. 一条不可伸长的轻绳绕过轻滑轮,一端连物体[A],另一端连一轻挂钩. 开始时各段绳都处于伸直状态,[A]上方的一段绳沿竖直方向. 现在挂钩上悬挂一质量为[m3]的物体[C]并从静止状态释放,已知它恰好能使[B]离开地面但不继续上升. 若将[C]换成另一个质量为[(m1+m2)]的物体[D],仍从上述初始位置由静止状态释放,则这次[B]刚离地时[D]的速度的大小是多少?已知重力加速度为[g].
  
  [v=2m1(m1+m2)g2(2m1+m3)k]
其他文献
考古帮助我们跨越时空和古人对话,帮助我们更好地了解早期人类的生活方式和人类文明的发展进程。请根据右边的图片和下面的表格,以The Gold Sun Bird Artifact为题,写一篇120字左右的短文,介绍2001年出土于四川成都金沙遗址的一张金箔——太阳神鸟金饰。  写作指导  本文属于物品介绍类说明文。对这类写作,首先,我们要明确说明对象,抓住该物品的特征。其次,我们要用恰当的顺序把这件事