论文部分内容阅读
利用一维波动方程的解具有行波解形式的特解的特点,给出行波解的形式.通过变量替换,再引入双曲正切函数作为独立变量,并利用双曲正切函数其独特的微分特性,给出1组变换,将修正的Kortewey-de Vries方程简化为常微分方程,由此得出它的解.此解可作为物理学中非线性方程的实例.尽管不是所有的非线性波动方程都可以用此法来处理,但它缩短了线性和非线性波动理论之间的距离.