论文部分内容阅读
针对地理社交网络中以频繁位置为背景知识的攻击导致用户身份泄露的问题,提出一种基于地理社交网络的频繁位置隐私保护算法。首先,根据用户对位置访问的频次设置频繁位置并为每个用户建立频繁位置集合;然后按照背景知识的不同,将频繁位置的子集组成超边,把不满足匿名参数k的超边以用户偏离和位置偏离最小值为优化目标进行超边重组;最后,通过仿真实验表明,与(k,m)-anonymity算法相比,在频繁位置为3的情况下,该算法在Gowalla数据集上用户偏离度以及位置偏离度分别平均降低了约19.1%和8.3%,在Brig