论文部分内容阅读
将波浪理论应用于价格、成交量特征样本序列选取,提出基于小波包能量值聚类特征提取与遗传神经网络相结合的股价预测模型.该模型采用小波包系数单支重构能量值空间分布表征价格波动本质,对能量点进行聚类以降低特征向量维数,将遗传算法与BP网络优势互补用于股价预测.对沪市股票上海汽车(600104)等进行的实证研究结果表明,该模型具有收敛速度快和预测精确度高的特点.