论文部分内容阅读
The use of passive mixing devices to enhance the mixing of supersonic streams is of importance in many aerospace and allied applications. A comparative experimental study of two such non-conventional axi-symmetric supersonic nozzles for mixing augmentation is undertaken in the present study. The nozzles studied are conventional convergent divergent (c-d), ramp, and nozzle with secondary tabs at the Mach number of 1.7. The freejet characteristics of the jets from the nozzles and the confined mixing of the jets under isothermal and non-isothermal conditions were experimentally investigated. In addition, schlieren and laser light sheet methods are employed for flow visualization. Results of experiments on freejet showed rapid total pressure decay, higher jet width, and increased shear layer width in the case of jets from non-conventional nozzles. Also visualized were complex shock patterns in these jets. The confined mixing studies in both cold and hot flows confirm the increased mixing behavior of non-conventional nozzles within shorter mixing duct lengths. Laser sheet visualization clearly demonstrated the formation of streamwise vortices, which accounts for the enhanced mixing while employing the nozzles under study.
The use of passive mixing devices to enhance the mixing of supersonic streams is of importance in many aerospace and allied applications. A comparative experimental study of two such non-conventional axi-symmetric supersonic nozzles for mixing augmentation is undertaken in the present study. studied are conventional convergent divergent (cd), ramp, and nozzle with secondary tabs at the Mach number of 1.7. The freejet characteristics of the jets from the nozzles and the confined mixing of the jets under isothermal and non-isothermal conditions were experimentally investigated. In addition, schlieren and laser light sheet methods are employed for flow visualization. Results of experiments on freejet showed rapid total pressure decay, higher jet width, and increased shear layer width in the case of jets from non-conventional nozzles. Also visualized were complex shock patterns in these jets. The confined mixing studies in both cold and hot flows confirm the increased mixing behavior of non-conventional nozzles within shorter mixing duct lengths. Laser sheet visualization clearly demonstrated the formation of streamwise vortices, which accounts for the enhanced mixing while employing the nozzles under study.