基于图像结构-纹理分解及局部总变分最小化的图像修复模型

来源 :计算机应用 | 被引量 : 4次 | 上传用户:wjlwny110
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在基于样例的图像修复算法中,由于优先权公式的计算容易受图像局部噪声和细小纹理的干扰,导致修复顺序错乱;而在搜索最优匹配块时,因忽略了图像块内部的结构影响,可能导致误匹配。针对以上问题提出了一种基于图像的结构-纹理分解及局部总变分最小化的图像修复模型。首先,根据对数总变分最小化模型,将待修复图像进行结构-纹理分解,得到图像的结构分量,并利用图像的结构分量来计算待修复点优先权,使优先权的计算排除局部纹理干扰而更具鲁棒性;其次,将优先权的计算改进为数据项和置信项的加权和,避免了乘积效应,确保数据项一直发挥
其他文献
活动轮廓模型广泛应用于图像分割和目标轮廓提取,基于边缘的测地活动轮廓(GAC)模型在提取边缘明显的物体时得到广泛的应用,但GAC演化过程中,迭代次数较多,耗时较长。针对这一问题,结合贝塞尔滤波理论,对GAC模型改进。首先,利用贝塞尔滤波对图像进行平滑处理,降低噪声;其次,基于贝塞尔滤波的边缘检测函数,构建新的边缘停止项,且并入到GAC模型中;最后,在构造的模型中同时加入反应扩散(RD)项以避免水平
抚顺双菱新型建材有限公司隶属抚顺石化公司石化二厂,为解决石化公司自备电厂粉煤灰排放污染问题,响应国家有关部门大力发展高掺量粉煤灰烧结多孔砖的号召,投资2700余万元于2000
针对脑部图像中存在噪声和强度失真时,基于结构信息的方法不能同时准确提取图像强度信息和边缘、纹理特征,并且连续优化计算复杂度相对较高的问题,根据图像的结构信息,提出了基于改进Zernike距的局部描述符(IZMLD)和图割(GC)离散优化的非刚性多模态脑部图像配准方法。首先,将图像配准问题看成是马尔可夫随机场(MRF)的离散标签问题,并且构造能量函数,两个能量项分别由位移矢量场的像素相似性和平滑性组
目前,我国经济发展以及社会发展都面临复杂的影响因素,在很大程度上不利于经济的健康发展,各个领域的企业也都面临着激烈的市场竞争。企业要想在市场竞争中占据有利地位,必须