论文部分内容阅读
为了解决机组运行过程中参数失效和优化过程中参数计算的问题,提出了一种基于核偏最小二乘方法的热力参数预测和估计方法。首先用正常数据建立机组参数的预测和估计模型,确定各变量之间的回归关系,然后将其用于参数的在线预测与估计。其基本思想是通过非线性核函数将数据映射到高维特征空间,然后在高维特征空间中进行偏最小二乘回归运算。该方法可以有效地捕捉变量间的非线性关系,参数预测和估计效果明显好于偏最小二乘法和主元回归方法等线性回归方法。某1000Mw发电机组烟气含氧量历史特征数据集仿真试验及实际应用比对实验证明了该方法的