论文部分内容阅读
实际的虹膜识别系统会遇到因为各种原因产生的不同类型的坏样本图像,如果它们进入系统的识别进程,常常会增加系统的注册失败率,也会导致定位或者识别的错误。而现有的图像质量评估方法是在完成虹膜定位或者粗定位之后,根据虹膜部分的清晰度和分辨率来判定是否为坏样本。因此实际上只能处理部分类型的坏样本,而且计算耗费大。论文详细分析了坏样本产生的原因和特点,提出了一种基于联合评估网络的实时预评估方法,在定位或粗定位开始之前,检测暂时存储的样本图像,根据预评估网络的输出结果来决定是进入下一步处理还是重新采集。试验结果表