【摘 要】
:
以偏苯三甲酸和Co(NO3)2?6H2O为原料,通过溶剂热法合成了一种钴基金属有机聚合物(Co-MOP).然后对Co-MOP进行高温(500、600、700℃)煅烧得到Co-MOP衍生材料(Co-MOP-500、Co-MOP-600、Co-MOP-700).采用XRD、SEM、TEM、XPS、BET对Co-MOP及其衍生材料进行了结构和形貌表征.将Co-MOP衍生材料用作锂离子电池负极材料,并进行了电化学性能测试.结果表明,Co-MOP衍生材料均为Co3O4,Co-MOP-600形成了较为稳定结构的多孔球
【机 构】
:
九江学院 化学化工学院,江西 九江 332005;江西省生态化工工程技术研究中心,江西 九江 332005;九江学院 化学化工学院,江西 九江 332005
论文部分内容阅读
以偏苯三甲酸和Co(NO3)2?6H2O为原料,通过溶剂热法合成了一种钴基金属有机聚合物(Co-MOP).然后对Co-MOP进行高温(500、600、700℃)煅烧得到Co-MOP衍生材料(Co-MOP-500、Co-MOP-600、Co-MOP-700).采用XRD、SEM、TEM、XPS、BET对Co-MOP及其衍生材料进行了结构和形貌表征.将Co-MOP衍生材料用作锂离子电池负极材料,并进行了电化学性能测试.结果表明,Co-MOP衍生材料均为Co3O4,Co-MOP-600形成了较为稳定结构的多孔球,较好地保持了Co-MOP的形貌,其比表面积为19.9 m2/g.Co-MOP-600具有优异的电化学性能.在100 mA/g电流密度下,Co-MOP-600电极的首圈放电比容量达到1818.5 mA·h/g,循环100圈后其比容量还能维持在1308.5 mA·h/g,Co-MOP-600稳定的多孔球形结构为锂离子的储存提供了更多的活性位点和运输通道.
其他文献
采用反相微乳液-表面溶剂聚合法制备了双壳结构的绿色电泳粒子(PIB/CT/S).采用SEM、TEM、XPS、FTIR和XRD对其进行了表征,以四氯乙烯为分散介质,PIB/CT/S为电泳粒子进行了电泳性能测试.结果表明,PIB/CT/S具有良好的球形结构,平均粒径为241.2 nm,是以二氧化硅球(S)为基体,以绿色钛酸钴(CT)为第一层包覆物,以离子液体聚合物〔聚(1-乙烯基-3-十二烷基)咪唑溴(PIB)〕为第二层包覆物,其密度为1.7905 g/cm3.可见光漫反射测试和电子墨水涂布平台测试表明,PI
采用 γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)对碱性纳米硅溶胶进行接枝改性,将其与苯丙乳液复合制备了节能涂层成膜基料,再分别向成膜基料中加入金红石型钛铬黄及刚玉型铬绿颜浆,制备了两类彩色隔热节能涂层.考察了功能颜料种类及功能颜料掺入量对复合涂层节能性能的影响.结果表明,与未改性硅溶胶相比,KH560改性后硅溶胶的平均粒径由987.3 nm降低到72.3 nm,Zeta电位绝对值提高了29.7 mV,其在苯丙乳液中分散性提高.当钛铬黄、铬绿颜浆掺入量分别为成膜基料质量的20%和10%时,两种彩色涂层隔
以二苯基硅二醇(DPSD)、聚二甲基硅氧烷(PDMS和KF-2201)对水性聚氨酯(WPU)进行化学改性以改善WPU耐水性和耐热性的不足,并探究3种改性剂对WPU胶膜耐水性和耐热性的影响.利用DLS对乳液粒径分布进行测试,采用FTIR、XPS、DSC、TG、DTG、SEM、AFM对胶膜进行表征.未改性胶膜、DPSD、PDMS以及KF-2201改性胶膜的水接触角分别为81.08°、96.37°、105.72°、110.05°,吸水率分别为16.41%、12.70%、10.19%、9.12%,热失重95%时相
以天然鳞片石墨、硝酸银、柠檬酸钠、N-甲基吡咯烷酮为原料,采用一步法制备了银纳米粒子(AgNPs)@石墨烯复合材料.随后在复合材料表面涂覆热塑性聚氨酯,得到了AgNPs@石墨烯柔性应力传感器.采用XRD、TEM、SEM对AgNPs@石墨烯复合材料(AgNO3与天然鳞片石墨质量比1:1)进行了表征,通过拉伸测试仪和数据采集仪对柔性应力传感器的灵敏性和机械性能进行了测定.结果表明,由AgNO3与天然鳞片石墨质量比1:1制备的柔性应力传感器灵敏度可达299,远高于纯石墨烯柔性应力传感器的灵敏度(14);同时具有
以商品化2,5-二(2,2,2-三氟乙氧基)苯甲酸(Ⅰ)为原料,二氯亚砜为酰氯化试剂,得到2,5-二(2,2,2-三氟乙氧基)苯甲酰氯(Ⅱ),中间体Ⅱ再与2-氨甲基哌啶反应得到盐酸氟卡尼(Ⅲ),化合物Ⅲ通过碱中和再与醋酸络合成盐得到目标产物醋酸氟卡尼.考察了投料比、反应时间以及溶剂对化合物Ⅲ收率的影响,优选的反应条件为:n(Ⅰ):n(2-氨甲基哌啶)=1:1.8(其中,化合物Ⅰ先活化成酰氯),以四氢呋喃为溶剂,冰浴搅拌2.0 h,得到盐酸氟卡尼.再以乙醇为溶剂,NaOH为碱,回流中和0.5 h,得到氟卡尼
以柠檬酸钠为碳源、氨水为氮源,采用一步水热法制备了氮掺杂碳点(NCDs),对其制备条件进行了优化.采用荧光光谱仪、TEM、AFM、XPS及FTIR对制备的NCDs进行了表征,并探索了NCDs在Fe3+检测及荧光防伪中的应用.结果表明,NCDs的最优制备条件为柠檬酸钠浓度为0.1 mol/L、氨水浓度为1.8 mol/L、反应温度为200℃、反应时间6 h、装载体积25 mL.在最优条件下制备的NCDs的荧光为典型的非激发波长依赖型,最佳激发波长为343 nm,最佳发射波长为443 nm,荧光量子产率可达5
采用原子转移自由基聚合法制备了聚(4-丙烯酰胺基-2,2,6,6-四甲基哌啶-1-氧基)-氧化石墨烯(PTAm-GO)复合材料.利用FTIR、1HNMR、电子顺磁共振(EPR)、TGA和SEM对其结构进行了表征.将其作为锂离子电池正极材料组装成半电池进行测试.结果表明,该复合材料是氮氧自由基聚合物PTAm化学接枝的GO.PTAm-GO比纯PTAm具有更好的储锂能力和电化学性能.在200 mA/g电流密度下,经过300次充放电循环后,PTAm-GO和纯PTAm电极的放电比容量分别为138和39 mA·h/g
采用绿色合成方法,利用椰子油与含芳香环取代基的组氨酸钠、苯丙氨酸钠、酪氨酸钠直接进行酰胺化反应制备了3种椰子油酰基芳香族氨基酸盐.采用HPLC-MS、FTIR对产物组成和结构进行了表征,并对合成产品的性能进行了测定.结果表明,椰子油酰基氨基酸盐表面活性剂的界面性能受氨基酸结构的影响较大,椰子油酰基苯丙氨酸钠与椰子油酰基组氨酸钠的临界胶束浓度(CMC)分别为9.84×10–5和6.79×10–5 mol/L,均远小于椰子油酰基酪氨酸钠的CMC(1.54×10–2 mol/L).3种椰子油酰基氨基酸盐表面活性
设计并制作了同轴毛细管阵列微反应器,以聚(9,9-二辛基芴-共-苯并噻二唑)(PFBT)为原料、四氢呋喃为溶剂、去离子水为反溶剂、聚苯乙烯-马来酸酐共聚物为稳定剂,采用纳米沉淀法制备了聚合物荧光纳米粒子.用动态光散射技术(DLS)对荧光聚合物纳米粒子的结构进行了表征.结果表明,同轴毛细管阵列微反应器中间层溶剂的存在改变了PFBT溶液与反溶剂的混合方式,克服了微流体注射纳米沉淀法中注射管口的产物沉淀堵塞问题.在PFBT质量浓度高达500 mg/L时,反应器仍可长时间持续运行.同时,聚合物纳米粒子的粒径可通过
通过高温煅烧造纸污泥制备了生物炭(SBC),然后用对氨基苯磺酸对SBC进行接枝,制备了一种碳基固体酸(S-SBC)催化剂.采用FTIR、XRD、SEM、N2吸附-脱附、XPS对催化剂进行了表征.将该催化剂用于D-果糖转化为5-羟甲基糠醛(HMF)反应,考察了反应时间、反应温度、催化剂用量及溶剂种类、D-果糖含量对HMF收率的影响,并与用杨木为原料且采用相同方法制备的杨木碳基对氨基苯磺酸接枝生物炭催化剂(S-PBC)进行比较.结果表明,S-SBC的催化活性优于S-PBC.S-SBC同时含有由金属离子形成的L