论文部分内容阅读
针对海面溢油样品的含量难以确定,同时考虑到海水掺杂及风化等问题的影响,提出了在较低非线性浓度范围内采集溢油嫌疑样品的同步荧光光谱,获取其训练样本集,利用主成分分析法(Principal com-ponent analysis,PCA)提取其特征光谱,结合径向基函数(Radial basis function,RBF)神经网络对肇事样本和嫌疑样本进行模式识别的方法。通过对相近油源原油样品分类识别研究表明:该方法仅需单次对肇事样本同步光谱测量,再借助数据分析,就可以很好区分相近油源溢油样品,外扰对识别率