论文部分内容阅读
研究了一种基于散度差准则的文本特征抽取方法。首先讨论了文本分类中特征降维的主要方法及其特点,然后分析了一种基于散度差的准则用于特征降维的原理和方法,从理论上对该方法的相关步骤进行了数学论证。在中文文本分类实验中,对KNN分类器进行了基于密度的改进,消除了由于文本分布倾斜对分类器产生的影响。实验结果表明,这种方法在文本分类的准确性方面效果较为理想。