论文部分内容阅读
提出了一种基于核化技术的模糊核超球感知器分类算法,该算法通过核化技术把样本数据映射到高雏特征空间,并利用超球感知器学习寻找高雏特征空间的决策超球,从而得到各类样本的决策函数.同时,样本测试中采用的模糊技术有效提高了算法的适应性.该算法学习规则简单,所得特征空间超球在样本空间的分布能很好地反映样本的数据结构,适用于不同类型数据结构样本的学习,并经大量试验显示了算法的有效性.