论文部分内容阅读
为了提高水稻种植面积遥感信息提取精度,将根据水稻生长期所选择的多时相遥感影像经过大气校正和几何校正后,实施单波段统计、主成份变换和比值变换,选出最佳组合波段,通过分析概率神经网络(probabilistic neural network,PNN)的学习算法和基本结构,对最佳组合波段影像实现PNN模型分类,并将其分类结果与反向传播(back propagation,BP)神经网络模型和最小距离法的分类结果进行比较.结果表明:PNN模型比最小距离法的分类精度高出近6个百分点;PNN模型比BP模型的分类精