论文部分内容阅读
针对传统布料疵点检测准确率低、识别较慢且计算量大问题,提出基于卷积神经网络的布料疵点检测方法,实现增强布料疵点检测鲁棒性、高效性的设计目标。为保证训练结果准确,首先采集数量以千万级为单位的布料图像并进行图像预处理,标记无疵点布料和疵点布料;然后将图像送入设计的卷积神经网络进行训练和测试,获取疵点检测框;紧接着采用改进的非极大值抑制分类算法对检测框进行多框合并,减少误检,进一步提高模型检测效果;最后利用设计的特征图分割算法使网络模型脱离图形处理器显存限制,适用于各种性能计算机。实验结果表明该方法可在实