Improved RBF network application in analog circuit fault isolation

来源 :城市道桥与防洪 | 被引量 : 0次 | 上传用户:ourl123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
One kind of steepest descent incremental projection learning algorithm for improving the training of radial basis function (RBF) neural network is proposed,which is applied to analog circuit fault isolation.This algorithm simplified the structure of network through optimum output layer coefficient with incremental projection learning (IPL) algorithm,and adjusted the parameters of the neural activation function to control the network scale and improve the network approximation ability.Compared to the traditional algorithm,the improved algorithm has quicker convergence rate and higher isolation precision.Simulation results show that this improved RBF network has much better performance,which can be used in analog circuit fault isolation field.
其他文献
周边漂移错觉引起过很多人的兴趣,尤其是Kitaoka创作的该错觉的一系列变体(http://www.ritsumei.ac.jp/~akitaoka/index-e.html]),吸引了众多研究者的兴趣。大量的研究表明这