一种基于Inception-V4的车位状态检测方法

来源 :计算机时代 | 被引量 : 0次 | 上传用户:weiweilee
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对城市停车难,车位检测环境复杂等情况,研究了一种基于Inception-V4算法的车位状态检测方法.在Inception-V4网络结构基础上使用Leaky_ReLU代替ReLU作为激活函数,解决ReLU激活函数引起的神经元失活问题;在网络分类层前添加FReLU激活函数层和多个全连接层,使其获得有更丰富语义信息的特征向量,防止了网络过拟合问题,提高车位状态检测模型的整体性能.基于PKLot停车场数据集的实验结果表明,该方法对车位状态检测准确率较原模型有较大程度的提升.
其他文献
针对云南边远山区低网络覆盖率和低传输速率下普通移动设备对神经网络处理速度慢、成本高、效率低的问题,提出一种基于APSoC的心音辅助诊断算法的硬件加速方法.在对5122例心音信号进行去噪、特征提取等预处理后,训练CNN网络模型用于心音样本分类.设计通用卷积电路与通用池化电路,将HLS优化后生成硬件电路部署至Zynq-7020 APSoC硬件平台,实现CNN算法的硬件加速.实验结果表明,相同条件下,其分类速度相比Intel-i7-8700提高了35倍,分类准确率仅损失了不到1%.该方法满足了高性能、低功耗、低
生成适应网络利用对抗训练辅助模型进行域适应分类,但仅使用单源域学到的知识有限,且对抗训练不足以减少域差异,造成判别特征难以识别,影响分类精度.针对该问题,提出一种结合对抗网络与条件均值的多源适应分类方法(MSDACG).对多个源域进行特征提取,提升特征学习的有效部分,对不同源和目标域特征使用特定域的生成对抗网络及条件最大均值差异拉近域间距离,采用差异损失约束由不同源域训练的分类器,实现利用多个源域的监督信息对目标域样本进行分类.实验结果表明,MSDACG模型能学到更优的域不变特征,与目前多源域适应算法比较
为提高编码程序对网络吞吐量和网络延迟的增益,在机会网络编码的基础上,利用自适应处理进行升级,提出一种机会网络编码扩展算法.该扩展算法作为通信栈中的一个独立层,仅依赖于节点本身的信息.在分组编码模块,编码算法搜索编码机会,寻找将消息附加到传出分组的机会;在决策制定过程中,根据网络链路质量的变化自动调整容限角;在自适应处理观察编码过程,采用与编码相关的参数.实验结果表明,与面向传输优化的机会网络编码(ONC-TO)、基于聚类的网络编码方法(CNC),以及不使用网络编码方法相比,所提编码程序能够显著提升网络有效
针对传统的同时定位与建图(SLAM)算法在动态环境中会降低自身运动估计的精确性以及系统鲁棒性的问题,提出一种适用于动态环境的视觉惯性SLAM算法——DVI-SLAM(dynamic visual inertial SLAM).根据对极几何约束检测并去掉动态特征,利用更加精确的静态特征进行状态估计;添加视觉信息自适应权重因子,提高系统的鲁棒性.改进的SLAM算法在公开的视觉惯性数据集TUM-VI上进行相关实验,实验结果与VINS-MONO相比在高动态场景中的定位精度平均提高了47.34%.
为加速嵌入式平台ARM CMSIS-NN上的神经网络卷积算法,提出一种面向开源RISC-V(精简指令级架构第五代)的卷积算法.采用RISC-V的P拓展指令集中特有的8位数据操作指令,优化ARM CMSIS-NN(微处理器软件接口标准)库中因为缺少DSP指令8位数据操作指令而带来的内存使用效率不高的不足.经实验仿真和下板验证,在蜂鸟E203 FPGA开发板上以16 MHz的时钟频率完成功能验证,与同等实验室实验情况下的arm-cortex-m3等设备相比,性能提升约12倍.
为提升基于TextRank算法的关键词抽取效果,分析中文语义结构和分词算法的特点,提出一种融合语义依存和外部知识库的方法.使用语义依存图代替共现窗口构建词图,增强词图中各节点间的语义联系;在此基础上引入规范化谷歌距离和领域词典这两个外部知识库特征,结合文档内外部信息对词图中的边进行加权计算,对提取出的文档关键词应用前后向匹配算法做进一步处理,使提取的关键词更具语义完整性.实验结果表明,该方法在数据集上的关键词抽取效果有了显著提升,可读性更强,验证了所提方法的有效性.
针对原始SSD算法各检测特征层没有关联导致特征融合较差,使得检测效果不佳,而现有改进算法DSSD以及RSSD等检测速度太慢的问题,提出一种基于多任务分支的SSD目标检测算法.对特征金字塔进行研究,构建语义与定位级联模块和融合分裂模块用于两个不同分支,在通过两个分支模块之后得到两组多尺度特征,构建多尺度通道聚合模块进行融合和加权,得到最终用于检测的特征金字塔.实验结果表明,在PASCAL VOC 2007数据集上达到79.6% 的检测精度,与SSD、DSSD相比具有更好的准确率,检测速度优于DSSD,具有实
针对目前的领域概念查询聚类方法中未见考虑用户偏好,提出一种支持用户偏好查询的领域概念图模型.该图模型主要包括两部分:基于概念本身考虑,利用综合语义相似度计算方法构建概念的语义关系图;基于用户查询偏好考虑,采用改进的互信息计算用户生成数据间隐含的查询偏好,将其结果用于补全领域概念的语义关系图.这一处理过程使得原有领域概念的语义关系图得到了有益的补充,满足了用户的偏好查询.经实验验证,该算法较现有方法,查准率、查全率以及F-measure值均有所提高且响应时间得到了降低.
为解决现有深度学习图像分割算法不能有效分割指针仪表图像中密集小目标的问题,提出基于多重感受野UNet的仪表图像分割方法.将自编码器结构和空洞卷积结构结合,使多尺度浅层特征和深层语义信息融合;以多种光照强度下采集的指针仪表数据训练模型,充分提升神经网络的泛化能力;并行调节空洞卷积参数,使神经网络学习到最优模型.实验结果表明,算法显著提升了指针仪表图像中密集小目标的分割效果,有效泛化于不同光照强度下采集的同种指针仪表图像,验证了该模型的有效性.
针对高效视频编码(high efficiency video coding,HEVC)分像素运动估计亮度分量插值算法计算量大、冗余度高、难以实现不同编码块之间灵活切换的问题,提出一种动态可重构且具有高数据复用率的分像素插值算法实现方法.根据编码单元(coding unit,CU)的规模和大小自适应地对其周围参考像素块进行插值计算,得到最优预测单元的编码模式和运动矢量.实验结果表明,与专用硬件实现的分像素插值算法相比,不同编码块灵活切换的同时,参考像素的读取数量减少43.8%,硬件资源消耗减少18.5%.