论文部分内容阅读
针对含有尖脉冲的齿轮箱振动信号故障特征难以提取且样本较少的问题,提出了一种基于α稳定分布和支持向量机故障诊断的新方法。先设计齿轮箱故障测试方案,获取齿轮箱振动信号;然后提取齿轮箱振动信号的α稳定分布参数,用它作为故障类型的特征样本,并结合决策树和投票法构造多分类支持向量机齿轮箱故障决策系统。该方法较好地解决了小样本学习问题,避免了人工神经网络进行诊断时的过学习、收敛速度慢等缺点。实际齿轮箱故障诊断实验结果表明所提方法有效。