论文部分内容阅读
图像的自动准确分割是实现黑素细胞瘤图像自动分析的关键.针对皮肤镜黑素细胞瘤图像,提出一种基于改进遗传算法和自生成神经网络(SGNN)相结合的自适应聚类分割算法.首先采用遗传算法选取一组最优的种子样本作为初始神经树;然后通过SGNN对剩余样本进行训练得到一个自生成神经森林;最后令森林中每棵树代表一个类,完成黑素细胞瘤图像的自适应聚类分割.该算法解决了SGNN对样本训练顺序敏感的问题,并能够自适应地确定类别数,聚类过程无需任何人工干预;同时根据解空间的大小设定遗传算法的初始种群规模,并在进化过程中根据个