矿区采空塌陷危险性预测的RS-SVM模型

来源 :中国安全科学学报 | 被引量 : 0次 | 上传用户:itlixw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为快速、准确地预测矿区采空塌陷的危险性,针对矿区采空塌陷预测的复杂非线性特点,在统计分析实测资料的基础上,选取7项指标作为初始特征指标,30组塌陷样本作为原始样本,其中,前17组为原始训练样本,后13组为测试样本;运用粗糙集(RS)理论,对原始训练样本进行对象约简和属性约简。将属性约简后的3项指标作为支持向量机(SVM)的输入向量,建立矿区采空塌陷危险性预测的RS-SVM模型。将对象约简后的7组样本作为训练样本,用于模型训练。采用回代估计法进行回检,误判率为0。利用训练好的模型对13组待评样本进行预测,并与贝叶斯、BP神经网络(BPNN)方法进行比较。结果表明,RS理论与SVM算法相结合,能降低属性维数,去除冗余样本,简化模型,该模型所得预测结果准确率为100%。 In order to quickly and accurately predict the danger of mined-mined collapse in mining areas, aiming at the complex nonlinear characteristics of mined-mined collapse prediction in mining area, seven indexes are selected as initial characteristic indexes based on the statistical analysis of measured data. Thirty groups of collapsed samples are used as primitive Samples, of which the first 17 groups for the original training samples, the latter 13 groups for the test sample; the use of rough sets (RS) theory, the original training samples for object reduction and attribute reduction. The RS-SVM model of risk prediction of goaf collapse is established by using the three indexes after attribute reduction as input vectors of Support Vector Machine (SVM). 7 groups of samples after object reduction were used as training samples for model training. Using the back-estimation method to conduct a retest, the false positive rate is 0. Thirteen groups of samples to be evaluated were predicted using the trained model and compared with Bayesian and BP neural network (BPNN) methods. The results show that the combination of RS theory and SVM algorithm can reduce the number of attributes, remove redundant samples and simplify the model. The accuracy of the prediction results obtained by this model is 100%.
其他文献
聚乙二醇单甲醚以其独特的性能,在建筑、涂料、纺织、电子、橡胶、医药、包装、食品加工等领域有广泛的应用。本文主要介绍了聚乙二醇单甲醚在混凝土减水剂的改性研究与应用,
<正>一、传销犯罪行为人希望通过传销组织牟利,而集资诈骗犯罪行为人是以非法占有他人集资款为目的,二者的主观目的存在明显差异。根据我国刑法第二百二十四条之一的规定,组
随着我国国民经济的快速发展,家禽饲养方式也朝着规模饲养、商品化生产和科学饲养的方向转变。但随着养禽业发展壮大,一系列问题也由此产生,其中禽病问题尤为突出,禽病问题不