论文部分内容阅读
针对推荐算法数据稀疏及聚类中心点敏感问题,提出了一种基于用户偏好和麻雀搜索聚类的协同过滤推荐算法。首先使用评分偏好模型对原用户项目矩阵进行修正,得到新的用户偏好-项目矩阵。利用麻雀搜索对聚类中心点进行优化,从目标用户所在簇内得到最近邻,提高了算法迭代速度,改善了聚类中心点敏感的问题。使用相似度公式对目标用户未评分项目进行预测,并完成推荐。实验结果表明,相较于其他几种推荐算法,准确度提高了4到6个百分点。