论文部分内容阅读
为了提高导弹的机动性、敏捷性和导引精度,新型导弹大多采用直接力/气动力复合控制方案。由于神经网络对于系统非线性变化具有较强的适应能力,因而在解决直接力/气动力复合控制中的时变非线性问题时有较明显的优点。在建立导弹非线性模型的基础上,采用模糊小脑模型神经网络(FCMAC)与动态逆相结合的方法设计导弹控制器,该方法结构简单,收敛速度快,易于硬件实现。数字仿真结果表明该方法对导弹系统参数的非线性变化具有很强的适应性。