论文部分内容阅读
目的甲状腺结节超声图像的精确分割对甲状腺结节的良恶性诊断尤为重要。目前,对于甲状腺结节超声图像的分割,有学者提出利用主动轮廓模型分割算法,但是由于活动轮廓分割算法需要手动设置迭代次数,未实现模型的自适应性。因此,本文提出了一种基于改进的无边缘主动轮廓-局部区域可控的拟合(Chan-Vese-region scalable fitting,CV-RSF)模型的甲状腺结节超声图像自适应分割算法。方法选取南京同仁医院12例患者的甲状腺结节超声图像用于实验。首先,在无边缘主动轮廓(Chan-Vese,CV)