论文部分内容阅读
基于一类正交多项式--可替代Legendre多项式(alternative Legendre polynomials,ALPs),提出一类分数阶比例时滞微分方程的数值计算方法.首先,利用ALPs的性质得到分数阶微积分的数值逼近结果,然后将分数阶比例时滞微分方程转化为代数系统进行求解.其次,对该方法进行误差分析,得到了方法的收敛性结果.最后,给出数值例子验证所给方法的有效性和精确性.