【摘 要】
:
The effects of magnetic fields on electrochemical processes have made a great impact on both theoretical and practical significances in im-proving capacitor performance. In this study, active carbon/Fe3O4-NPs nanocomposites (AC/Fe3O4-NPs) were synthesized
【机 构】
:
Liaoning Provincial Key Laboratory of New Energy Battery, Dalian Jiaotong University, Dalian 116028,
论文部分内容阅读
The effects of magnetic fields on electrochemical processes have made a great impact on both theoretical and practical significances in im-proving capacitor performance. In this study, active carbon/Fe3O4-NPs nanocomposites (AC/Fe3O4-NPs) were synthesized using a facile hy-drothermal method and ultrasonic technique. Transmission electron micrographs (TEM) showed that Fe3O4 nanoparticles (Fe3O4-NPs) grew along the edge of AC. AC/Fe3O4-NPs nanocomposites were further used as an electrochemical electrode, and its electrochemical performance was tested under magnetization and non-magnetization conditions, respectively, in a three-electrode electrochemical device. Micro-magnetic field could improve the electric double-layer capacitance, reduce the charge transfer resistance, and enhance the discharge performance. The capacitance enhancement of magnetized electrode was increased by 33.1%at the current density of 1 A/g, and the energy density was improved to 15.97 Wh/kg, due to the addition of magnetic particles.
其他文献
In this study, a poly(ether block amide) (Pebax 1657) composite membrane applied for CO2 capture was prepared by coating Pebax 1657 solution on polyacrylonitrile (PAN) ultrafiltration membrane. Ethanol/water mixture was used as the solvent of Pebax and th
Various mesoporous chromia alumina catalysts were prepared by five different methods based on a metal-organic framework MIL-101 and their catalytic performances over isobutane dehydrogenation were investigated. The highly dispersed chromium species were p
Pd/Ce0.8Zr0.2O2 catalysts modified by cobalt were prepared by a sequential impregnation method and characterized by X-ray powder diffraction (XRD), N2 adsorption/desorption (Brunauer-Emmet-Teller), oxygen storage capacity (OSC), CO-chemisorption, H2-tempe
A Co3 O4 nanorod supported Pd electro-catalyst for the methanol electro-oxidation (MEO) has been fabricated by the combination of hydrother-mal synthesis and microwave-assisted polyol reduction processes. The crystallographic property and microstructure h