论文部分内容阅读
Kdesorption from soils in a constant electric field(field strength:44.5Vcm-1) by means of electro-ultrafil-tration (EUF) followed second-order kinetics and could be described by the equation dd/dt = k(D-d)2. From theequation, such kinetic parameters relating to K desorption from soils as the maximum desorbable quantity D, quantity of K desorbed within 40 minutes d40, initial desorption rate Vo, desorption rate constant k and half-time t1/2 could be calculated. An expression which describes the relationships between the kinetic parameters on the one hand and the responses of barley to fertilizer-K in the field experiments in different sites and the potassium-supplying power of soils on the other was established. Vo, D and d40 were significantly correlated with barley relative yield, K uptake by barley and the content of soil available potassium. The rate constants of K desorption varied between 4.42 × 10-4-1.80 × 10-3kg mg-1 min-1 and highly correlated with the relative yield of barley. The kinetic par
Kdesorption from soils in a constant electric field (field strength: 44.5 Vcm -1) by means of electro-ultrafil-tration (EUF) followed by second-order kinetics and could be described by the equation dd / dt = k (Dd) 2. From theequation, such kinetic parameters relating to K desorption from soils as the maximum desorbable quantity D, quantity of K desorbed within 40 minutes d40, initial desorption rate Vo, desorption rate constant k and half-time t1 / 2 could be calculated. An expression which describes the relationships between the kinetic parameters on the one hand and the responses of barley to fertilizer-K in the field experiments in different sites and the potassium-supplying power of soils on the other was established. Vo, D and d40 are highly correlated with barley relative yield, K uptake by barley and the content of soil available potassium. The rate constants of K desorption varied between 4.42 × 10 -4 -1.80 × 10 -3 kg mg -1 min -1 and highly correlated with the relative yield of barle y. The kinetic par