基于SIFT的图像匹配方法改进

来源 :计算机系统应用 | 被引量 : 2次 | 上传用户:iserce
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
SIFT算法是一种经典的图像匹配方法,但也存在计算量大、时间复杂度高的问题.针对这些问题,本文提出了一种改进的SIFT算法,将SIFT算法中表示关键点的特征信息结构进行改造,重新生成了一种新的有序结构.此结构将128维向量描述子根据关键点的8个梯度索引方向分成8组,产生新的有序描述子.重构之后的算法,减少了关键点匹配的计算量,从而提高算法的效率.实验表明,改进的算法,保持了原算法的优点以及在不降低原算法匹配精度的情况下,算法效率有明显提升.
其他文献
为了缓解人脸图像容易受光照、表情和姿态变化对人脸识别的影响,Yong提出了利用了人脸的对称性产生新的样本来表示人脸特征的方法.这种方法可以反映出人脸样本由于表情、姿态
本文是对SKIG RGB-D多模态的孤立手势视频进行手势识别研究.首先将RGB和Depth两种单模态视频提取成图片的形式保存,然后采样成长度为32帧的手势序列分别输入到本文提出的稠密连接的3DCNN组件学习短期的时空域特征,然后将提取的时空域特征输入到卷积GRU网络进行长期的时空域特征学习,最终对单模态训练好的网络进行多模态融合,提升网络识别准确率.本文在SKIG数据集上取得了99.07%的识别准