论文部分内容阅读
本文针对目前人们对分类性能的高要求和多分类器集成实现的复杂性,从分类器分类错误的分布特性和识别性能出发,对基于核聚类的多分类器选择算法内容及应用要点进行了探讨。这种算法是围绕核的可能性聚类算法作为核心构建的,找出各分类器在特征空间中局部性能较好的区域,并利用具有最优局部性能的分类器的输出作为最终的集成结果。理论分析和实验结果表明:该算法具有很好的分类性能。