论文部分内容阅读
针对一类模型不精确的非线性系统,提出了一种RBF神经网络与滑模控制策略。RBF神经网络在一定条件下可以任意精度逼近非线性函数,且具有较强的自学习、自适应和组织能力。因此,将其与滑模变结构控制策略相结合,应用于非线性系统中。实验结果表明:其克服了传统滑模变结构控制中的振颤问题,同时,继承了滑模变结构控制所具有的快速性能好、鲁棒性强和抗干扰性能优良的特点。