论文部分内容阅读
图像分割是计算机视觉研究中重要的一部分,其主要目的是在图像中将兴趣域目标与背景分割,关系到后续的目标识别、图像理解等操作的准确性.经过几十年的发展,许多优秀的图像分割的方法被提出.机器学习是当今时代的研究热点,基于深度卷积神经网络等机器学习的图像分割研究进展迅速.总结介绍了应用于图像分割的几种典型机器学习方法,分析比较了相关的分割原理步骤、优缺点和发展现状.最后分析了基于机器学习的图像分割算法的发展方向.