论文部分内容阅读
目的:通过研究全麻手术病人的脑电信号特征,从分类准确率、算法难易程度、计算时间等方面讨论样本熵和小波熵算法在麻醉深度监测中的应用。方法:基于脑电信号的非线性和不稳定性,采用两种非线性动力学分析方法(样本熵和小波熵)对30例全麻手术病人的脑电信号进行特征提取,并对每位病人清醒状态、轻度麻醉状态和中度麻醉状态下的脑电信号的样本熵和小波熵进行差异分析。结果:不同麻醉状态下的脑电信号的样本熵和小波熵均有明显差异。相同脑电信号的样本熵的变化阈值较小波熵的变化阈值大。结论:样本熵和小波熵算法均可以作为麻醉深度监测的有效指标。从分类准确率、算法难易程度和计算时间等方面考虑,使用样本熵算法的效果优于小波熵算法。