论文部分内容阅读
在提高字典鉴别能力的过程中,最大间隔字典学习忽视了利用重新获得的数据构建分类器的泛化性能,不仅与最大间隔原理有关,还与包含数据的最小包含球(MEB)半径有关。针对这一事实,提出泛化误差界指导的鉴别字典学习算法GEBGDL。首先,利用支持向量机(SVM)的泛化误差上界理论对支持向量引导的字典学习算法(SVGDL)的鉴别条件进行改进;然后,利用SVM大间隔分类原理和MEB半径作为鉴别约束项,促使不同类编码向量间的间隔最大化,并减小包含所有编码向量的MEB半径;最后,为了更充分考虑分类器的泛化性能,采用交