论文部分内容阅读
针对贝叶斯网络中多父节点条件概率分布参数学习问题,提出了一种适用于多态节点、模型不精确、样本信息不充分情形的参数学习方法。该方法利用因果机制独立假设,分解条件概率分布,使条件概率表的规模表现为父节点个数和状态数的线性形式;利用Leaky Noisy-MAX模型量化了多态系统模型未含因素对参数学习的影响;从小样本数据集中获取模型参数并合成条件概率表。结果表明,该方法能提高参数学习效率与精度。