论文部分内容阅读
利用图像特征对烟叶进行分级时,提出了一种对烟叶图像特征进行有效选择的新方法——利用二进制粒子群算法联合SVM模型自适应地选择对烟叶分级影响较大的特征,剔除对分级影响较小或相互间有关联的某些特征,并利用Adaboost和RBF分类器进行验证。结果表明,用SVM分类器时,用被选特征比输入全部特征具有更好的分级正确率;对于相同的分类器,利用二进制粒子群和SVM算法自适应筛选后的特征比输入全部特征具有更好的分级吻合率。