论文部分内容阅读
The ordinary–slow extraordinary–Bernstein(O-SX-B) mode conversion in the electron cyclotron range of frequencies(ECRF) is revisited in slab geometry. The analytical formula of the O-SX conversion efficiency by Mj?lhus is upgraded to include the magnetic field gradient, and the analytical expression of the SX-B conversion efficiency by Ram and Schultz is generalized for the case of oblique injection. Therefore, the conversion efficiency and optimal parallel refractive index for the whole O-SX-B conversion are obtained analytically and a shift of optimal parallel refractive index due to SX-FX loss is found. Full wave calculations are also presented to be compared with the analytical results.
The ordinary-slow extraordinary-Bernstein (O-SX-B) mode conversion in the electron cyclotron range of frequencies (ECRF) is revisited in slab geometry. The analytical formula of the O-SX conversion efficiency by Mj? Lhus is upgraded to include the magnetic field gradient, and the analytical expression of the SX-B conversion efficiency by Ram and Schultz is generalized for the case of oblique injection. Thus, the conversion efficiency and optimal parallel refractive index for the whole O-SX-B conversion are obtained analytically and a shift of optimal parallel refractive index due to SX-FX loss is found. Full wave calculations are also presented to be compared with the analytical results.