论文部分内容阅读
为了提高频繁项集挖掘算法的准确性,在不确定性数据流频繁项集挖掘算法SRUF-mine的基础上引入最大可能误差,提出一种基于滑动窗口的false-positive挖掘算法UFIM。UFIM算法对数据流进行分块处理,在内存中维护一个存储滑动窗口内频繁项集的概要数据结构,随着窗口的滑动对该概要结构进行增量更新。实验表明,与SRUF-mine相比,UFIM算法能获得较高的频繁项集挖掘的准确性。