【摘 要】
:
The blood-spinal cord barrier plays a vital role in recovery after spinal cord injury. The neurovascular unit concept emphasizes the relationship between nerves and vessels in the brain, while the effect of the blood-spinal cord barrier on the neurovascul
【机 构】
:
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China;Dep
论文部分内容阅读
The blood-spinal cord barrier plays a vital role in recovery after spinal cord injury. The neurovascular unit concept emphasizes the relationship between nerves and vessels in the brain, while the effect of the blood-spinal cord barrier on the neurovascular unit is rarely reported in spinal cord injury studies. Mouse models of spinal cord injury were established by heavy object impact and then immediately injected with platelet-derived growth factor (80 μg/kg) at the injury site. Our results showed that after platelet-derived growth factor administration, spinal cord injury, neuronal apoptosis, and blood-spinal cord barrier permeability were reduced, excessive astrocyte proliferation and the autophagy-related apoptosis signaling pathway were inhibited, collagen synthesis was increased, and mouse locomotor function was improved. In vitro, human umbilical vein endothelial cells were established by exposure to 200 μM H2O2. At 2 hours prior to injury, in vitro cell models were treated with 5 ng/mL platelet-derived growth factor. Our results showed that expression of blood-spinal cord barrier-related proteins, including Occludin, Claudin 5, and β-catenin, was significantly decreased and autophagy was significantly reduced. Additionally, the protective effects of platelet-derived growth factor could be reversed by intraperitoneal injection of 80 mg/kg chloroquine, an autophagy inhibitor, for 3 successive days prior to spinal cord injury. Our findings suggest that platelet-derived growth factor can promote endothelial cell repair by regulating autophagy, improve the function of the blood-spinal cord barrier, and promote the recovery of locomotor function post-spinal cord injury. Approval for animal experiments was obtained from the Animal Ethics Committee, Wenzhou Medical University, China (approval No. wydw2018-0043) in July 2018.
其他文献
Biomaterial bridging provides physical substrates to guide axonal growth across the lesion. To achieve efficient directional guidance, combinatory strategies using permissive matrix, cells and trophic factors are necessary. In the present study, we evalua
Conventional neuroimaging techniques cannot truly reflect the change of regional cerebral blood flow in patients with carpal tunnel syndrome. Pseudo-continuous arterial spinning labeling (pCASL) as an efficient non-invasive neuroimaging technique can be a
Spinal cord injury dramatically blocks information exchange between the central nervous system and the peripheral nervous system. Theresulting fate of synapses in the motor cortex has not been well studied. To explore synaptic reorganization in the motor
Axonal regeneration plays an important role in functional recovery after nervous system damage. However, after axonal injury in mammals, regeneration is often poor. The deletion of Krüppel-like factor-4 (Klf4) has been shown to promote axonal regeneration
Stem cells have been confirmed to be involved in the occurrence and development of diabetic retinopathy; however, the underlying mechanisms remain unclear. In this study, we used Citespace software to visually analyze 552 articles exploring the stem cell-
Creatine kinase is a muscle enzyme that has been reported at various levels in different studies involving patients with amyotrophic lateral sclerosis. In the present retrospective case-control study, we included 582 patients with amyotrophic lateral scle
Electroencephalographic studies using graph theoretic analysis have found aberrations in functional connectivity in children withdevelopmental dyslexia. However, how the training with visual tasks can change the functional connectivity of the semantic net
Regenerating functional new neurons in the adult mammalian central nervous system hasbeen proven to be very challenging due to the inability of neurons to divide and repopulate themselves after neuronal loss. Glial cells, on the other hand, can divide and
Electroacupuncture (EA) has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia. However, there are few studies on the results and mechanism of the effect of EA in reducing blood
Nogo-A is considered one of the most important inhibitors of myelin-associated axonal regeneration in the central nervous system. It is mainly expressed by oligodendrocytes. Although previous studies have found regulatory roles for Nogo-A in neurite outgr