论文部分内容阅读
Fluidic self-assembly is an approach by which micro parts less than one millimeter in size can be driven by the capillary force of a certain adhesive liquid and be fixed onto the desired sites on some substrates. Normal glass with the composition of Na2SiO3CaSiO34SiO2 has been widely used in fluidic microelectromechanical systems (MEMS) and bio-MEMS devices. We investigate the MEMS self-assembly experiment on normal glass substrate. The results of scanning electron microscopy (SEM) show that micro-parts of 400 μm400 μm squares can be precisely assembled in the expected area of the normal glass substrate.