论文部分内容阅读
摘要:固体氧化物燃料电池(SOFC)系统是一个非线性系统,现存的建模方法和优化控制算法很难对其进行精确的建模及优化控制;针对此问题,采用基于数据的建横方法,对固体氧化物燃料电池系统进行BP神经网络建模,然后在此基础上,首次采用启发式动态规划(HDP)算法对固体氧化物燃料电池系统中的各种气体分压、输出电压以及温度进行优化控制;Matlab仿真结果表明,基于BP神经网络的HDP优化算法具有收敛速度快、鲁棒性强、控制精度高等优点,并使固体氧化物燃料电池系统在负载变化时很快稳定输出电压,实现了优化控制,减少能耗。