论文部分内容阅读
提出一种基于RGB亮度分级和方向密度的自然场景无监督文本定位方法,该方法基于场景文本通常与局部背景有较大的对比度这一特性,分别在R、G、B三个颜色层进行亮度分级,以降低背景复杂性;然后,利用文字笔画的显著方向性,以方向密度为依据进行文本区域粗定位;再进一步利用SVM多类分类器实现文本区域精确判别。新方法克服了一般无监督方法颜色聚类数目选定困难的问题,限制了候选区域的种类,从而降低了SVM分类器的训练难度,具有较高的准确性和鲁棒性。