论文部分内容阅读
特征选择算法(TFFS)存有一定的不足:集中度难于正确衡量低频繁特征项的权值;分散度忽略了互信息为负数的特征项对文本分类的影响。提出一种改进的特征选择算法(TFFSL),TFFSL对集中度、分散度做了一定的改进,避免了TFFS的缺陷,同时TFFSL结合特征项长度信息,提高了短语和词语在分类中的作用。SVM分类实验结果表明:与TFFS相比,TFFSL有更高的文本分类性能和剔除无关特征项的能力。