论文部分内容阅读
首先引入群分次弱正则环的概念,在此基础上证明了:(1)设G是群,J是K的分次理想,Jσ=Kσ∩J,则K是群分次弱正则环当且仅当J和K/J是群分次弱正则环.(2)假设K是一个环,n是任一正整数,则K是群分次弱正则的当且仅当Mn(K)是群分次弱正则的.如果K是群G分次环,则Ke是K的子环,且1∈K,(其中e是群G的单位元).得到了群G-分次环K与Ke的一些关系.再者,引进了分次半平坦模的概念,并有如下主要结果:环K是分次弱正则的当且仅当所有右K-模是分次半平坦的.群分次弱正则环推广了群分次正则环,从而得到群分