论文部分内容阅读
由于红外光学衍射限和红外探测器的局限,得到的红外图像噪声相对偏大,分辨率偏低。对红外图像进行超分辨率重建可以提高图像分辨率,但同时又会增强背景噪声。针对此问题,提出了基于稀疏编码的红外显著区域超分重建算法,将超分重建和显著度检测相结合,可以提高目标分辨率并降低背景噪声。首先采用双层卷积提取图像特征,并自适应选择图像信息熵较大的图像块用于训练联合字典。然后利用稀疏特征计算显著度获取显著区域,再将显著区域用训练好的字典进行超分辨重建,与目标无关的背景区域采用高斯滤波。实验结果显示改进的重建算法在同等条件