论文部分内容阅读
针对生物医学文献的数量急剧增长,人工从文献中获取所需要的信息已不能适应生物医学文献数量迅速生长的需要。利用StanfordParser等开源工具,采用自然语言处理技术、统计学等多种方法,提出了一种新型的生物信息挖掘模型,并对其关键技术进行分析。该模型在对全文文本SBQTL(SoybeanQuantitativeTraitLoci)测试中父母本信息提取的准确率和召回率分别为93.0%和78.4%;在对PubMed测试中,准确率和召回率分别为94.3%和80.0%。解决了生物医学研究者从海量文献中更有效、快速