论文部分内容阅读
Autophagy has evolved as a conserved process for the bulk degradation and recycling of cytosolic components, such as long-lived proteins and organelles. In neurons, autophagy is important for homeostasis and protein quality control and is maintained at relatively low levels under normal conditions, while it is upregulated in response to pathophysiological conditions, such as cerebral ischemic injury. However, the role of autophagy is more complex. It depends on age or brain maturity, region, severity of insult, and the stage of ischemia. Whether autophagy plays a beneficial or a detrimental role in cerebral ischemia depends on various pathological conditions. In this review, we elucidate the role of neuronal autophagy in cerebral ischemia.
Autophagy has evolved as a conserved process for the bulk degradation and recycling of cytosolic components, such as long-lived proteins and organelles. In neurons, autophagy is important for homeostasis and protein quality control and is maintained at relatively low levels under normal conditions, while It is upregulated in response to pathophysiological conditions, such as cerebral ischemic injury. However, the role of autophagy is more complex. It depends on age or brain maturity, region, severity of insult, and the stage of ischemia. or a detrimental role in cerebral ischemia depends on various pathological conditions. In this review, we elucidate the role of neuronal autophagy in cerebral ischemia.