论文部分内容阅读
【摘 要】计算机视觉是使用计算机及相关设备对生物视觉的一种模拟。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样。由于算机视觉学在工农业生产、地质学、天文学、气象学、医学及军事并学等领域有着极大的潜在应用价值,所以它在国际上越来越受人重视。本文简要地介绍了计算机视觉学结构和研究内容,它同附近学科的关系,计算机视觉研究中面临的技术难点以及计算机视觉学的历史,现状和研究动向。
一、计算机视觉的概念
计算机视觉系统一般有光源、摄像机、采集卡及PC软件系统等组成,可以完成图像的采集与处理、目标的识别功能,视觉系统的结构一般是从系统的模型的角度理解的。
计算机视觉既是工程领域,也是科学领域中的一个富有挑战性重要研究领域。计算机视觉是一门综合性的学科,它已经吸引了来自各个学科的研究者参加到对它的研究之中。其中包括计算机科学和工程、信号处理、物理学、应用数学和统计学,神经生理学和认知科学等。
计算机视觉学所研究的对象,简单地说就是研究如何让计算机通过图象传感器或其它光传感器来感知、分析和理解周围环境。
二、计算机视觉的应用
人类正在进入信息时代,计算机将越来越广泛地进入几乎所有领域。一方面是更多未经计算机专业训练的人也需要应用计算机,而另一方面是计算机的功能越来越强,使用方法越来越复杂。这就使人在进行交谈和通讯时的灵活性与目前在使用计算机时所要求的严格和死板之间产生了尖锐的矛盾。人可通过视觉和听觉,语言与外界交换信息,并且可用不同的方式表示相同的含义,而目前的计算机却要求严格按照各种程序语言来编写程序,只有这样计算机才能运行。为使更多的人能使用复杂的计算机,必须改变过去的那种让人来适应计算机,来死记硬背计算机的使用规则的情况。而是反过来让计算机来适应人的习惯和要求,以人所习惯的方式与人进行信息交换,也就是让计算机具有视觉、听觉和说话等能力。这时计算机必须具有逻辑推理和决策的能力。具有上述能力的计算机就是智能计算机。
计算机视觉就是用各种成象系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完成处理和解释。计算机视觉的最终研究目标就是使计算机能象人那样通过视觉观察和理解世界,具有自主适应环境的能力。要经过长期的努力才能达到的目标。因此,在实现最终目标以前,人们努力的中期目标是建立一种视觉系统,这个系统能依据视觉敏感和反馈的某种程度的智能完成一定的任务。例如,计算机视觉的一个重要应用领域就是自主车辆的视觉导航,目前还没有条件实现象人那样能识别和理解任何环境,完成自主导航的系统。因此,目前人们努力的研究目标是实现在高速公路上具有道路跟踪能力,可避免与前方车辆碰撞的视觉辅助驾驶系统。这里要指出的一点是在计算机视觉系统中计算机起代替人脑的作用,但并不意味着计算机必须按人类视觉的方法完成視觉信息的处理。计算机视觉可以而且应该根据计算机系统的特点来进行视觉信息的处理。但是,人类视觉系统是迄今为止,人们所知道的功能最强大和完善的视觉系统。因此,用计算机信息处理的方法研究人类视觉的机理,建立人类视觉的计算理论,也是一个非常重要和信人感兴趣的研究领域。这方面的研究被称为计算视觉。计算视觉可被认为是计算机视觉中的一个研究领域。 有不少学科的研究目标与计算机视觉相近或与此有关。这些学科中包括图象处理、模式识别或图象识别、景物分析、图象理解等。由于历史发展或领域本身的特点这些学科互有差别,但又有某种程度的相互重叠。
三、计算机视觉研究的对象与方法
以模型世界为主要对象的视觉基本方法研究
这个阶段以Roberts的开创性工作为标志。在Roberts的工作中引入了三维物体与二维成像的关系,采用了一些简单的边缘特征提取方法并引入了组合线段的方法。这些早期的工作对视觉的发展起了促进作用,但对于稍微复杂的景物便难于奏效。
四、机器人视觉的发展
机器人视觉系统按其发展可分为三代。第一代机器人视觉的功能一般是按规定流程对图像进行处理并输出结果。这种系统一般由普通数字电路搭成,主要用于平板材料的缺陷检测。第二代机器人视觉系统一般由一台计算机,一个图像输入设备和结果输出硬件构成。视觉信息在机内以串行方式流动,有一定学习能力以适应各种新情况。第三代机器人视觉系统是目前国际上正在开发使用的系统。采用高速图像处理芯片,并行算法,具有高度的智能和普通的适应性,能模拟人的高度视觉功能。
20世纪70年代中期,以Marr, Barrow和Tenebaum等人为代表的一些研究者提出了一整套视觉计算的理论来描述视觉过程,其核心是从图像恢复物体的三维形状。在视觉研究的理论上,以Marr的理论影响最为深远。其理论强调表示的重要性,提出要从不同层次去研究信息处理的问题。对于计算理论和算法实现,他又特别强调计算理论的重要性。这一框架虽然在细节上甚至在主导思想上还存在不完备的方面,许多方面还有很多争议,但至今仍是目前计算机视觉研究的基本框架。
进入80年代中后期,随着移动式机器人等的研究,视觉研究与之密切结合,大量引入了空间几何的方法以及物理知识,其主要目标是实现对道路和障碍的识别处理。这一时期引入主动视觉的研究方法,使用了距离传感器,并采用了多传感器融合等技术。
五、计算机视觉发展趋势
计算机视觉是在20世纪50年代从统计模式识别开始的.当时的工作主要集中在二维图像分析和识别上,如光学件表面、显微图片和航空图片的分析和解释等.60年代,Roberts(1965)通过计算机程序从数字图像中提取出诸如立方体柱体等多面体的三维结构,并对物体形状及物体的空间关系进行描述[Roberts 1965]。70年代中期,麻省理工学院(MIT)人工智能(AI)实验室正式开设“机器视觉”由国际著名学者B.K.P.Hom教授讲授。80年代以来,计算机视觉的研究已经历r从实验室走向实际应用的发展阶段。水平的飞速提高以及人工智能、并行处理和神经元网络等学科的发展,更促进了计算机视觉系统的实用化和涉足许程的研究。目前,计算机视觉技术正在广泛应用于计算机图形学、图像处理、机器入学等多个领域中。
注:本文为基于模拟公司的项目教学模式研究与实践(项目编号:2012jyxm778)阶段性成果。
一、计算机视觉的概念
计算机视觉系统一般有光源、摄像机、采集卡及PC软件系统等组成,可以完成图像的采集与处理、目标的识别功能,视觉系统的结构一般是从系统的模型的角度理解的。
计算机视觉既是工程领域,也是科学领域中的一个富有挑战性重要研究领域。计算机视觉是一门综合性的学科,它已经吸引了来自各个学科的研究者参加到对它的研究之中。其中包括计算机科学和工程、信号处理、物理学、应用数学和统计学,神经生理学和认知科学等。
计算机视觉学所研究的对象,简单地说就是研究如何让计算机通过图象传感器或其它光传感器来感知、分析和理解周围环境。
二、计算机视觉的应用
人类正在进入信息时代,计算机将越来越广泛地进入几乎所有领域。一方面是更多未经计算机专业训练的人也需要应用计算机,而另一方面是计算机的功能越来越强,使用方法越来越复杂。这就使人在进行交谈和通讯时的灵活性与目前在使用计算机时所要求的严格和死板之间产生了尖锐的矛盾。人可通过视觉和听觉,语言与外界交换信息,并且可用不同的方式表示相同的含义,而目前的计算机却要求严格按照各种程序语言来编写程序,只有这样计算机才能运行。为使更多的人能使用复杂的计算机,必须改变过去的那种让人来适应计算机,来死记硬背计算机的使用规则的情况。而是反过来让计算机来适应人的习惯和要求,以人所习惯的方式与人进行信息交换,也就是让计算机具有视觉、听觉和说话等能力。这时计算机必须具有逻辑推理和决策的能力。具有上述能力的计算机就是智能计算机。
计算机视觉就是用各种成象系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完成处理和解释。计算机视觉的最终研究目标就是使计算机能象人那样通过视觉观察和理解世界,具有自主适应环境的能力。要经过长期的努力才能达到的目标。因此,在实现最终目标以前,人们努力的中期目标是建立一种视觉系统,这个系统能依据视觉敏感和反馈的某种程度的智能完成一定的任务。例如,计算机视觉的一个重要应用领域就是自主车辆的视觉导航,目前还没有条件实现象人那样能识别和理解任何环境,完成自主导航的系统。因此,目前人们努力的研究目标是实现在高速公路上具有道路跟踪能力,可避免与前方车辆碰撞的视觉辅助驾驶系统。这里要指出的一点是在计算机视觉系统中计算机起代替人脑的作用,但并不意味着计算机必须按人类视觉的方法完成視觉信息的处理。计算机视觉可以而且应该根据计算机系统的特点来进行视觉信息的处理。但是,人类视觉系统是迄今为止,人们所知道的功能最强大和完善的视觉系统。因此,用计算机信息处理的方法研究人类视觉的机理,建立人类视觉的计算理论,也是一个非常重要和信人感兴趣的研究领域。这方面的研究被称为计算视觉。计算视觉可被认为是计算机视觉中的一个研究领域。 有不少学科的研究目标与计算机视觉相近或与此有关。这些学科中包括图象处理、模式识别或图象识别、景物分析、图象理解等。由于历史发展或领域本身的特点这些学科互有差别,但又有某种程度的相互重叠。
三、计算机视觉研究的对象与方法
以模型世界为主要对象的视觉基本方法研究
这个阶段以Roberts的开创性工作为标志。在Roberts的工作中引入了三维物体与二维成像的关系,采用了一些简单的边缘特征提取方法并引入了组合线段的方法。这些早期的工作对视觉的发展起了促进作用,但对于稍微复杂的景物便难于奏效。
四、机器人视觉的发展
机器人视觉系统按其发展可分为三代。第一代机器人视觉的功能一般是按规定流程对图像进行处理并输出结果。这种系统一般由普通数字电路搭成,主要用于平板材料的缺陷检测。第二代机器人视觉系统一般由一台计算机,一个图像输入设备和结果输出硬件构成。视觉信息在机内以串行方式流动,有一定学习能力以适应各种新情况。第三代机器人视觉系统是目前国际上正在开发使用的系统。采用高速图像处理芯片,并行算法,具有高度的智能和普通的适应性,能模拟人的高度视觉功能。
20世纪70年代中期,以Marr, Barrow和Tenebaum等人为代表的一些研究者提出了一整套视觉计算的理论来描述视觉过程,其核心是从图像恢复物体的三维形状。在视觉研究的理论上,以Marr的理论影响最为深远。其理论强调表示的重要性,提出要从不同层次去研究信息处理的问题。对于计算理论和算法实现,他又特别强调计算理论的重要性。这一框架虽然在细节上甚至在主导思想上还存在不完备的方面,许多方面还有很多争议,但至今仍是目前计算机视觉研究的基本框架。
进入80年代中后期,随着移动式机器人等的研究,视觉研究与之密切结合,大量引入了空间几何的方法以及物理知识,其主要目标是实现对道路和障碍的识别处理。这一时期引入主动视觉的研究方法,使用了距离传感器,并采用了多传感器融合等技术。
五、计算机视觉发展趋势
计算机视觉是在20世纪50年代从统计模式识别开始的.当时的工作主要集中在二维图像分析和识别上,如光学件表面、显微图片和航空图片的分析和解释等.60年代,Roberts(1965)通过计算机程序从数字图像中提取出诸如立方体柱体等多面体的三维结构,并对物体形状及物体的空间关系进行描述[Roberts 1965]。70年代中期,麻省理工学院(MIT)人工智能(AI)实验室正式开设“机器视觉”由国际著名学者B.K.P.Hom教授讲授。80年代以来,计算机视觉的研究已经历r从实验室走向实际应用的发展阶段。水平的飞速提高以及人工智能、并行处理和神经元网络等学科的发展,更促进了计算机视觉系统的实用化和涉足许程的研究。目前,计算机视觉技术正在广泛应用于计算机图形学、图像处理、机器入学等多个领域中。
注:本文为基于模拟公司的项目教学模式研究与实践(项目编号:2012jyxm778)阶段性成果。