论文部分内容阅读
基于改进的移动最小二乘插值法,提出了黏弹性问题的插值型无单元Galerkin方法.采用改进的移动最小二乘插值法建立形函数,根据黏弹性问题的Galerkin弱形式建立离散方程,推导了相应的计算公式.与无单元Galerkin方法相比,本文提出的黏弹性问题的插值型无单元Galerkin方法具有直接施加本质边界条件的优点.通过数值算例讨论了影响域、节点数对计算精确性的影响,说明了该方法具有较好的收敛性;将计算结果与无单元Galerkin方法和有限元方法或解析解比较,说明了该方法具有提高计算效率的优点.