论文部分内容阅读
在最优K相异性算法(OptiSim)的基础上,提出一种扩展的最优K相异性算(EOptiSim)。由于EOptiSim在处理组合数据库和分布式数据库方面能弥补基本的OptiSim方法的不足,所以通过在DBSCAN算法之前应用0ptiSim或EOptiSim多样化代表性子集选择技术。在显著降低I/O耗费和内存需求的同时,不仅能够有效地聚类单一的大规模空间数据库,而且还能聚类大规模组合数据库或分布式数据库.实验结果表明本文的算法是可行、有效的.